

CAPSULE

A Programming Language Code Compression

Technique
Govind Prasad Arya, Prince Kashyap, Nilika Kumari, Mitali Hembrom

Department of Computer Science,

Shivalik College of Engineering, Dehradun, Uttarakhand, INDIA.

Abstract—In present era internet & large scale scientific
research are the most prominent user of large amount of data
transmission. Since there is a trade of between efficiency of
internet and size of the data being transmitted, so less size data
can reach fast and efficiently. Therefore, compressing the data
provide a significant change in efficiency of the data
transmission. Also it helps in transmission of data efficiently
over large scale research in various fields. And on the other side
data which is stored on storage disk has some statistical
redundancy, which consume unnecessary space and it can be
solved by compressing the data.

Keywords—Compression, Decompression, Dictionary, Symbol,
Programming Language Code Compression & Decompression,
Negative ASCII Characters

I . IN T R O D U C T I O N
COMPRESSION is the reduction in size of data in order to
save space and transmission time [Arnavut, 2000].
Compression is possible since there always is some amount
of data redundancy or there may be a predictable flow to the
data. The size of data is reduced by removing the excessive
information. There are two main types of data compression.1-
lossless compression [Burrows & Wheeler, 1994; Awan &
Mukherjee, 2001], and 2- lossy compression. In lossy
compression data once being compressed can’t get back to its
original form e.g. video compression. If we to reduce the size
of a video file by reducing its pixel then it can’t be get back
to its original form while in lossless compression the
compressed data can be get back to its original form e.g. text
compression. On the other side when we compress (lossless)
a text file it does not have any use if it can’t get back to its
original form. There are many lossless compression algorithm
which we studied e.g. LZ77, LZW, Huffman compression
[Balkenhol et al., 1999].
1.1. Shortcomings of other Algorithms
o No special compression technique for programming

languages.
o In LZ77, search buffer is thousands of bytes long, while

the lookahead buffer is tens of byte long.
o The encryption can be much time consuming due to the

larger number of comparison need to be made to find
matched pattern.

o Compression techniques have their external dictionary
which cause problem while decompressing on another
machine.

Other algorithms have thousands of bytes long search
buffer, when we check for any character in a string it will
go through all the thousands of bytes in the search buffer
which is very time consuming, so we advanced our
algorithm so that it will just search for some limited no of
bytes so that it doesn’t have to go for thousands of bytes. It
simply matches the character in a search dictionary &
replace it with any symbol if no match found then it simply
replaces it by itself.

I I . M E T H O D O L O G Y
2.1. Our Contribution
Since there is no specific algorithm for compressing a
programs written in different programming languages. The
proposed algorithm compress thousands of lines of codes
written in several programming languages, which occupy a
large amount of space in memory. It does not generate new
output tuple like other algorithms when no match found,
rather it replaces the string by itself. And uses an internal
dictionary (generated internally while compiling the code).
Which removes problem of transmission of codes &
programs over the internet.
In this algorithm we have a array in which certain
keywords/strings are inserted to find a match for their
corresponding symbols(non keyboard) But unlike LZ-77 in
this array size is very limited i.e.128 which takes much less
time to compare to match .
2.2. Compression and Decompression Process
In this section we show how the compression and
decompression is performed using the proposed algorithm.
2.2.1. Compression Process
Input Data: #include<stdio.h>
Here in this example input stream is the data which has to
be compressed and it has a size of 13 bytes and compression
need to be done to make its size less than 11 bytes. Here first
characters are checked for alphabet and the string in the text
is searched in the internal array for a match. If a match is
found in the array then the will be replaced with the
corresponding symbol. If not then write the string itself in
temporary file. All other characters are written without
change in the target file. For example initially when
character is ‘ #’, it is written into the target file. Same is
the case with ‘<’. When ‘i’ is found the characters are
inserted into the string and then array is searched for a

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 883-885

www.ijcsit.com 883

match .Since include has a match in the array defined , it is
replaced by the corresponding character in the target file. But
if it does not find any match, the same string is written into
the target file. This process is repeated for all character till the
end of file (EOF) is found. The size of target file containing
this string is now 9 bytes.

Table 1 – array of keywords/strings

2.2.3. Decompression Process
In this process the compressed code is converted back to its
original form.

Here is the compressed data: # <ŷ.h>

Now we have to decompress [Cleary, 1995 & Effros 2000]
this compressed data into original data. For every symbol we
have its corresponding string in the array defined as an
internal dictionary. The corresponding string is written back
into the target file(decompressed file). The output now is
generated by matching each symbol against the
corresponding string in the array. All other characters not
present in the array get replaced by itself in the decompressed
file. Similar process is repeated till EOF. In this way the
original data is obtained from the compressed data.

Table 2 – Decompression Process

SymbolsCorresponding String

A include
B Stdio
~ Printf
 Scanf
. .
Ŷ unsigned

Temporary Data: #  < ŷ . h>

 #include < stdio. h>

Figure 1 – Generation of Original Data

Now we can see that we have got the data which we
had before compression.

2.3 Compression Algorithm
 COMPRESS (source file)
 Open source file & target file
 Read one character from source file
 While (EOF)
 {
 If(character is an alphabet)

 Declare an empty string;
 While (character is an alphabet)
 {
 Append the character to string;
 Read next character;
 If(character is EOF)
 Break;
 }
 code=Dictionary(string);
 If(code b/w -2 to -128)
 {
 Write code to target file;
 }
 else
 write string to target file;
 }

 }
 Close source file & target file.

byte DICTIONARY(string)
{
code=1;
Match string from array element;
 Set code=value of array element matched;
Return code; }
We can get a compressed file after applying above
algorithm.

2.4 Decompression Algorithm

DECOMPRESS (source file)
 Open source file & target file
 Read one character from source file
While (EOF)
{

 If (character b/w -2 to -128)
 {
 Match character from array element;
 Write the matched string to target file;
 }
 else
 Write the character to target file
 Read next character ;

}
}

Close source file & target file
}
We can get a decompressed file after applying above
algorithm.

Keywords/Strings ASCII value of Symbol
include -2
stdio -3
printf -4
scanf -5

malloc -6
return -7

. .
unsigned -128

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 883-885

www.ijcsit.com 884

2.5 Advantages of Algorithm
• This algorithm does not generate new tuple when no

match found rather it replaces the character by itself.
• Search buffer size in this algorithm is relatively very

small so it is not time consuming and is faster than LZ77.
• It has its external dictionary which make it easy to

decompress while comparing tuple with external
dictionary.

I I I . C O N C L U S I O N & R E S U L T

The main aim of compression is to reduce the size of the data
so that it will take less space and easily transfer over the
internet which reduces the cost. LZ-77 is a good algorithm
for compression but still it has some major drawbacks as it
take much time to compress while comparing for pattern
match, while in our algorithm by adding external dictionary
and limited search buffer size we overcome this problem and
which make it faster than previous algorithm. As for example
taken to describe the process the compression ratio is
45.45%. and the future scope of algorithm can be improved
more are by providing threading in program to make program
run concurrently [Chapin, 2001] and taking appropriate data
structure so dictionary can be accessed fast.

RE F E R E N C E S

1. M. Burrows & D.J. Wheeler (1994), “A Block – Sorting Lossless Data
compression Algorithm”, SRC Research Report 124, Digital Research
Systems Research Centre.

2. J.G. Cleary, W.J. Teahan & Ian H. Witten (1995), “Unbounded Length
Contexts for PPM”, Proceedings of Data Compression Conference,
IEEE Computer Society, Snowbird Utah, Pp. 52– 61.

3. R. Franceschini & A. Mukherjee (1996), “Data Compression using
Encrypted Text”, IEEE Proceedings of ADL, Pp. 130– 138.

4. B. Chapin & S. Tate (1998), “Preprocessing Text to Improve
Compression Ratios”, Proceedings of the IEEE Data Compression
Conference, Snowbird, Pp. 532.

5. B. Balkenhol, S. Kurtz & Y.M. Shtarkov (1999), “Modifications of the
Burrows Wheeler Data Compression Algorithm”, Proceedings of Data
Compression Conference, IEEE Computer Society, Snowbird Utah, Pp.
188–197.

6. B. Balkenhol & Y. Shtarkov (1999), “One Attempt of a Compression
Algorithm using the BWT”, SFB343: Discrete Structures in
Mathematics, Faculty of Mathematics, University of Bielefeld,
Germany.

7. Z. Arnavut (2000), “Move-to-Front and Inversion Coding”,
Proceedings of Data Compression Conference, IEEE Computer
Society, Snowbird, Utah, Pp. 193–202.

8. M. Effros (2000), “PPM Performance with BWT Complexity: A New
Method for Lossless Data Compression”, Proceedings of Data
Compression Conference, IEEE Computer Society, Snowbird Utah, Pp.
203–21 2.

AUTHORS
Govind Prasad Arya has completed Master of Technology (M.Tech) in
Computer Science & Engineering from Uttarakhand Technical U niversity,
Dehradun (Uttarakhand). He has 8 years of teaching experience from
different institutions (Govt. Polytechnic Dwarahat, Kumaon Engineering
College Dwarahat). Presently He is working at Shivalik College of
Engineering, Dehradun as an Assistant Professor in Computer Science &
Engineering Department. Data Structures, Computer Organization,
Operating System & Compiler Design are his area of interest. His four
research papers on Compression have been published by reputed
International Journals. He has attended several Conferences and Seminars.

Prince Kashyap, pursuing his B. Tech, Final year in Computer Science &
Engineering from Shivalik College of Engineering. His area of interest is
coding and Networking. He has attended several seminar and workshop on
cloud computing, Networking, Ethical Hacking conducted by Kyrion
,Ankit Fadia respectively

Nilika Kumari, pursuing her B. Tech, Final year in Computer Science &
Engineering from Shivalik College of Engineering. Her area of interest is
Software Designing, Data Structure and Networking. She has attended
several seminar and workshop on cloud computing, Networking, Ethical
Hacking conducted by Microsoft, Kyrion, Ankit Fadia respectively.

Mitali Hembrom, pursuing her B. Tech, Final year in Computer Science
& Engineering from Shivalik College of Engineering. Her area of interest
is Software Designing, web development Ethical Hacking. She has
attended several seminar and workshop on cloud computing and Ethical
Hacking conducted by Kyrion, Ankit Fadia respective

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 883-885

www.ijcsit.com 885

